If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8u^2=u
We move all terms to the left:
8u^2-(u)=0
We add all the numbers together, and all the variables
8u^2-1u=0
a = 8; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·8·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*8}=\frac{0}{16} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*8}=\frac{2}{16} =1/8 $
| 3=-8q^2 | | (X)=1.1z | | √79-5x=6x+4 | | z/4+3=-44 | | 124=2x | | 6^3=2y | | 124=2d | | k/4+4=17 | | -14-2y=-14 | | s=-6s^2 | | 8x4=20 | | 3z^2+5z+5=0 | | 10=7–x | | n-20=3 | | 7y^2+7=0 | | 3(r+6)=30.3 | | x-20=x*0.7072 | | 2(10w+1)=16(2-5w) | | x=8^6 | | 1.25x=x+15 | | x+44=66 | | (14+f)/2=26 | | 2(t+19)=3(2t-14) | | 6(g+3)=2(g+23) | | x-20=x*0.9439^6 | | 3(1-2q)=4q+1 | | 7q=63q= | | 5z+19=6(2z-12) | | 14+6x=2 | | 4s-8=11 | | 6.3g+10=4.3g+14 | | 3-5(x+1)=6-4x |